SPECIES IS A UNIT OF MEASUREMENT

EPSA23

Aline Potiron, JKU Linz https://apotiron.github.io

JOHANNES KEPLER UNIVERSITY LINZ

Introduction - Species

- Species concept:
 - Practical
 - Epistemological
 - Theoretical

"Species Problem"

• Species are units of classification, evolution, and diversity

Introduction - Diversity

"The simplest concept of diversity is **species richness**, the number of species found in a local community. Even this seemingly simple concept can be surprisingly complicated **to measure** and use correctly." (Mittelbach & McGill, 2019, 13)

- $\circ \alpha$ -diversity or species richness
- Diversity can be **measured**. We need a **measurement process**.
- So far, a philosophical analysis of diversity as measurement remains elusive.
- Measurements frameworks seldom consider biological examples.

Aims

- 1. Propose such analysis of diversity measurement, in particular in the case of microorganismal communities.
- 2. Flesh out what is the role of the species concept in such formalization
- 3. Outline the implication of this analysis for the practical, epistemological, and theoretical dimensions of the species problem.

Today, I will engage with 1., propose a hypothesis for 2. and only sketch 3.

Metagenomics

 Metagenomics and in particular Amplicon Sequencing (AS) is a methodological substitution to microbial observation, which disrupt the link between microorganism and their DNA.

Object: Microbial community

Metagenomics

• How this measurement process can be formalized?

• Where and what role (if any), the species concept is playing here?

- Importance of **models** in measurement theory (Tal, 2013)
- Incompleteness of the representational standpoint of measurement theory (Frigerio, Giordani, and Mari, 2010)
- A concrete and empirical vs. representational, more abstract level (Tal, 2013).
- **Double modeling system** (Giordani & Mari, 2012):

the measurement process	the measurand
specifies the quantities involved in the process, the kinds of their interactions, and the conditions of such interactions	specifies the relevant structure of the object under measurement, the definition of the measurand itself in reference conditions (i.e., as if it were measurable by an ideal measuring system), and the set of quantity values which could be assigned to the measurand

1. Analysis and Idealization

 $\circ \alpha$ -diversity

=> The measurement problem (c, D) becomes the ideal measurement problem (c*, D*)

Figure 6 - Structure of solution of a measurement problem.

Giordani & Mari, 2012

2. Ideal solution

Ideal measuring instruments: Sequencers mS* Bioinformatic tools mB*

Quantity value d*

Figure 6 - Structure of solution of a measurement problem.

Giordani & Mari, 2012

3. Synthesis – Realization: Two steps de-idealization

	DNA sequence↓		S1	S2	S 3
m S	CGTAGGCGGCC		237	5037	2
	CGTAGGCGGC A		124	7	2970
	CGTAGGCGG GA	_	45	3412	1543

Giordani & Mari, 2012

Figure 6 - Structure of solution of a measurement problem.

mB

Need a **practical**, **precise way** of distinguishing between groups, e.g., **thresholds** at which two DNA sequences of the same marker are considered **different species**.

Species as source of uncertainty

- Validity (Giordani & Mari, 2012):
 - empirical qualities of the measurement
 - adequation of the idealizations
 - degree of correspondence between the ideal and the actual measurement process
- Because the species concept enters measurements in the modeling activities, it creates relevant uncertainties to the parameter diversity.

Species as source of uncertainty

- Choosing a particular definition of species when grouping the sequences is a way of choosing a trade-off between accuracy and resources to be employed.
 - e.g., which threshold definition of species is the most accurate grouping? (McLaren & Callhan, 2018). What does it cost in terms of resources?
- This should be chosen in accordance with the measurement goals.
- Why is diversity measured in the first place?

=> The species concept, as part of the modeling process of measurement of **diversity**, is a **source of uncertainty**.

Implications

- 1. Practical dimensions: Diversity measures in microbial ecology are highly contextual (Shade, 2016).
 - Conservation biology needs comparison need more standards in microecology?
- 2. Epistemic role: Source of uncertainty.
 - Is it co-extensive to the classification role?
 - Is it a new case of homonymy of the species concept?
- 3. Theoretical assumptions: is it a case of the species-as-status thesis?

Conclusion

Aim 1: Metagenomics can be considered as a measurement process aiming at measuring diversity in microbial communities. It can be formalized using model-based accounts of measurement.

Aim 2: The species concept is one of many sources of **uncertainty** in the diversity measurement process.

Aim 3: Remain **to develop** the implication of this analysis for the practical, epistemological, and theoretical dimensions of the species problem.

To be continued...

Thank you!

References 1/2

- Amitani, Y. (2022). Is the Species Problem That Important? In J. S. Wilkins, F. E. Zachos & I. YA. Pavlinov (Eds.), Species Problems and Beyond (pp. 39-64). CRC Press. DOI: 10.1201/9780367855604-3
- Frigerio, A., Giordani, A., and Mari, L. (2010). Outline of a general model of measurement. *Synthese*, 175, 2, 123-149.
- Giordani, A. & Mari, L. (2012). Measurement, models, and uncertainty. IEEE Transactions on Instrumentation and Measurement, 61(8), 2144-2152. DOI: 10.1109/TIM.2012.2193695
- McLaren, M. & Callahan, B. (2018). In Nature, There Is Only Diversity. *mBio*, 9(1), e02149-17. https://doi.org/10.1128/mBio.02149-17.
- Mittelbach, G. G. & McGill, B. J. (2019). Community Ecology. Second Edition. Oxford University Press.

References 2/2

- Reydon, T. (2022). 'Species' as a Technical Term: Multiple Meanings in Practice, One Idea in Theory. In J. S. Wilkins, F. E. Zachos & I. YA. Pavlinov (Eds.), Species Problems and Beyond (pp. 65-90). CRC Press. DOI: 10.1201/9780367855604-4
- Shade, A. (2016). Diversity is the question, not the answer. ISME Journal, 11(1), 1-6. https://doi.org/10.1038/ismej.2016.118
- Tal, E. (2013). Old and New Problems in Philosophy of Measurement. *Philosophy Compass*, 8(12), 1159-1173. https://doi.org/10.1111/phc3.12089